On the convergence of HLMS Algorithm
نویسندگان
چکیده
In multicriteria decision making, the study of attribute contributions is crucial to attain correct decisions. Fuzzy measures allow a complete description of the joint behavior of attribute subsets. However, the determination of fuzzy measures is often hard. A common way to identify fuzzy measures is HLMS (Heuristic Least Mean Squares) algorithm. In this paper, the convergence of the HLMS algorithm is analyzed. First, we show that the learning rate parameter (α) dominates the convergence of HLMS. Second, we provide an upper bound for α that guarantees HLMS convergence. In addition, a toy example shows the descriptive power of fuzzy measures versus the poverty of individual measures.
منابع مشابه
Revised HLMS: A useful algorithm for fuzzy measure identification
An important limitation of fuzzy integrals for information fusion is the exponential growth of coefficients for an increasing number of information sources. To overcome this problem a variety of fuzzy measure identification algorithms has been proposed. HLMS is a simple gradient-based algorithm for fuzzy measure identification which suffers from some convergence problems. In this paper, two pro...
متن کاملImplementation of the Trigonometric LMS Algorithm using Original Cordic Rotation
The LMS algorithm is one of the most successful adaptive filtering algorithms. It uses the instantaneous value of the square of the error signal as an estimate of the mean-square error (MSE). The LMS algorithm changes (adapts) the filter tap weights so that the error signal is minimized in the mean square sense. In Trigonometric LMS (TLMS) and Hyperbolic LMS (HLMS), two new versions of LMS algo...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملOn the Convergence Analysis of Gravitational Search Algorithm
Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...
متن کاملModified frame algorithm and its convergence acceleration by Chebyshev method
The aim of this paper is to improve the convergence rate of frame algorithm based on Richardson iteration and Chebyshev methods. Based on Richardson iteration method, we first square the existing convergence rate of frame algorithm which in turn the number of iterations would be bisected and increased speed of convergence is achieved. Afterward, by using Chebyshev polynomials, we improve this s...
متن کامل